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ABSTRACT

In the first part of this paper we study in detail the properties of the

divergence operator acting on continuous piecewise polynomials; more

specifically, we characterize the range and prove the existence of a maximal

right-inverse whose norm grows at most algebraically with the degree of the

piecewise polynomials.

In the last part of this paper we apply these results to the p-version of

the Finite Element Method for a nearly incompressible material with

homogeneous Dirichlet boundary conditions. We show that the p-version

maintains optimal convergence rates in the limit as the Poisson ratio

approaches 1/2. This fact eliminates the need for any "reduced integration"

such as customarily used in connection with the more standard h-version of the

Finite Element Method.
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A RIGHT-INVERSE FOR THE DIVERGENCE OPERATOR IN

SPACES OF PIECEWISE POLYNOMIALS. APPLICATION
TO THE p-VERSION OF THE FINITE ELEMENT METHOD.

Michael Vogelius*

1. Introduction

For many finite element discretizations of P.D.E.'s

estimates of the error rely on a detailed study of the divergence

operator on corresponding sets of piecewise polynomials.Examples

of this are mixed formulations for the Laplace equation or the

equations of elasticity (cf. [6],19]) and discretizations of the

Stokes problem (cf. [10]).

Finite element methods in general are based on some partition

of the domain and convergent solutions are typically obtained by

letting the mesh size h tend to 0 using piecewise polynomials of

some fixed degree (the h-version). Recently a different version

has received quite a bit of attention (cf. [1,3,4,7]), namely the so-called

p-version of the Finite Element Method. The p-version is based on a

fixed triangulation and the degree of the piecewise polynomials is

increased in order to give convergence.

In section 2 of this paper we analyze the divergence operator

with special emphasis on applications for the p-version, to be

more precise

(i) we characterize the range of the divergence operator

acting on fields that are continuous piecewise poly-

nomials of degree < p+l on some triangulation of a

domain 0 (for p > 3).

*Courant Institute of Mathematical Sciences, New York University,
New York, New York 10012

This work was supported by the Office of Naval Research under
Grant No. N00014-81-K0002, and completed at the Mathematics
Research Center, sponsored by the United States Army under
Contract No. DAAG29-80-C-0041.
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(ii) we show that a maximal right-inverse exists, which

takes values in continuous piecewise polynomial

fields of degree < p+l , and which has an operator

norm that grows at most algebraically with p.

The first of these two results is by far the easiest, it

may be obtained from a purely combinatorial argument and use of

the Grassmann dimension formula. Since i) follows very naturally

as an intermediate result in our proof of the second (and much

harder) assertion we shall only give a sketch of the selfcontained

combinatorial argument (cf. Remark 2.1).

The reference [9) contains an explicit construction of a right-

inverse for the divergence operator for piecewise polynomials of

arbitrarily high degree, but the fields defined that way are not

continuous across inter-element boundaries, only the normal

components are.

In section 3 we apply the results (i) and (ii) to a particular

discretization by the p-version. The continuous model is that of

a nearly incompressible linearly elastic material (Poisson ratio

1 with boundary conditions that are homogeneous Dirichlet.
2

We show that the discrete solution converges at an optimal rate

even when v is extremely close to I; this is in sharp contrast to

the h-version where one encounters significantly reduced convergence

rates for nearly incompressible materials (we refer to (11] for a

more detailed discussion). In (11] we relied on the results Ci)

and (ii) to analyze the similar problem for the case of natural

boundary conditions on a smooth domain.

Let D be a bounded polygonal domain in In , n = 1,2.

Throughout this paper H k(D) denotes the standard Sobolev space

of functions that have all derivatives of order < k in T,2(1)).

-
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Whenever no ambiguity is possible the same notation shall also

be used for vector valued functions whose components are in

Hk(D). Spaces with noninteger exponents are defined by complex

interpolation (cf. [5]). The norm on the space HS(D) is

denoted 11s, and S(D) refers to the closure of Co(D)

in H (D).
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2. A maximal right-inverse for the divergence operator.
* Let 9 be a bounded polygonal domain in R 2 and let E denote

a triangulation of n . We assume that E has the property that no

vertex of a triangle lies in the interior of a side of another.

Before treating piecewise polynomials on the triangulation E

we establish a few preliminary facts concerning polynomials on a

single triangle. In what follows To shall always denote the

reference triangle ((x,y)10 < x, 0 < y, x+y < 1) . is the

derivative along the outward normal to T0 and is the derivative

tangential to T0 and counterclockwise.

Lemma 2.1

Let QP+l(x) and RP(x) be two polynomials in x of degree < p+1

and < p respectively. Assume that 0 and 1 are zeros of multiplicity

at least 3 for Qp+1 and at least 2 for RP .

There exists a polynomial sP+l(x,y) in x and y of degree

< p+l satisfying

M Sl= a p+l = 0 on the two sides

x = 0 , y= 0,

(ii) Sp + l (x,y) Qp+l (x)

a SP+1 (x,y) = RP(x) on the side x+y = 1.

(iii) ISP+I0,T0 < C(p+l) K (IQP+ 1I0,[0,1 ] + IRPlo,1oI ] }

with constants C and K that are independent of p,

QP+I and RP

-- . ', .; ,.
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Proof: Since 0 and 1 are zeros of multiplicity > 2 for both

Qp I and RP we can write

Q p1 W = x2 (- 2 ap-3(X

2 2 ip--4(

RP+(x) = x2(l-x) 2 QP-(x)

RP(x) = x2(l-x) 2 P4X

Define Tp+ l by

TP+ 1 (x,y) = x 2 y 2 bP- 3 (x)

Then

(1) TPl D TP - =0 on the
n

two sides x = 0, y = 0

(2) TP+1 (x,y) = QP+lx) on

the side x+y = 1

By integration we get

1 l-x
J T(TP+Il(x, y)) dx dy =I 4( -- x) 2 I y4 dy dx

0 0 0

1 1
(-x) (QP-3 (x))2dx < I (QP+l(x))2 dx

0 0

i.e.,

(3) ITP+I O,To < C IQP+ 1 o,[0,1]

Due to the fact that 0 and 1 are zeros of multiplicity at

p+1
least 3 for Qp, we can also write

t 7~77 -
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TO+ y 2 2 ;p-4
an T y = x (l-x) . 4 (x)

Define Up +I by

U P+(x,y) = / x 2 y 2 (x+y-) (RP- 4 (x) -P-4(x))

Then

(4 lip+' 0 on the

two sides x = 0, y = 0

(5) uP+l = 0 and

aUP+I p I (
5--n (x,y) = RP(x) - a T ,y)

on the side x+y = 1.

By integration as before,

IUp~1 I0  <0 C(IRPI a! P+i.

P+0, TO - C( 0,[0,1] + n ly=l- x  0'[0'i)1

The standard trace theorem therefore gives

(6) u +uP+I ,O,T0  < C t(IRPI 0, 0,1 ]  + ITP+1 It,T0

for any t > 3/2

It is known, and used repeatedly in this paper, that

ITP+It, < Ct(P+l)2t ITP+ 1IO0

for any polynomial Tp + 1 of degree < p+l, and any t > 0.

(The reference [41 contains a proof of this inequality on a

t '1



square. By a localization argument one can extend to other7

type domains, e.g. triangular). Inserting into (6) and using (3)

we thus obtain

(7) Iup'. 1 10 ~ < C (p+l) 2t IRPIO[] I P+ I )

for any t > 3/2.

Finally let

It is then clear from (1) ,(2), (4) and (5) that SP1satisf ies

the requirements Wi and (ii) . The estimate (iii) follows from

(3) and (7) .As K we can use any number > 3. 0

Lemma 2.2. Let QP(x and IRP(x be two polynomials in x of degree

< p. Assume that 0 and 1 are zeros Of multiplicity at least 2 for
QP and RP. Assume furthermore that 1 QP(x dx =0.

There exists a polynomial SP~l x,y) in x and y of degree

< p+l, satisfying

Mi a-s 1  
- = 0 on the

two sides x = 0, y 0

S (x,y) = RP(x on the side x+y =1

(i i)lSPll0 T0 -< C(p+l) K(I~ 0P 1 1,[O1 + li 0,[0,1j]
with constants C and K that are independent

of P, OQ' and RP
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Proof: Define QP+l(x) = - / JXQP(s)ds and construct SP+ 1 (x,y)

according to the previous lemma with boundary data 'p+l and Rp .

This Sp+ I has the desired properties. 0

Lemma 2.3. Let T be a triangle two sides of which lie on the lines

a x + by + Ci = 0, i = 1,2. Let OP be a polynomial of the form

QP(x,y) = (aIx+bly+Cl)(a 2 x+b 2 Y+c 2) 2 Rp-3(x,) ,

where Rp - 3 is a polynomial in x and y of degree < p-3. Pssume

furthermore that

J QP(x,y)dx dy = 0.T
There exists a field UP +l = (UP+ ', UP + ') of polynomials

of degree < p+l, satisfying

(i) UP l = 0 on 3T

(ii) V-Up + I = OP in T

(iii) I~uP+IlI1,T <_ C(P+l) K I0Qlo, T

with constants C and K that are independent of

p and o2 .

, _ .. • ~-
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Proof: By an affine transformation T can be mapped onto T0  in

such a way that alx + blY + c, = 0 goes to x = 0 and a + b2v

+ c 2 = 0 to y = 0. It therefore suffices to prove the result on

T with QP given by

QP(x,y) xy 2 R- 3 (x,y)

Define WP + I as follows

P+I(xY) = QP(s,y)dsw1

0

W2p + l (x,y) = 0

This ensures that

0P+1(xy) = X2 2 wp-3(X,y )

V_ p + I = Qp and

(8) IwP+I1 < C(p+l) 2 IQPI

_qp+l is therefore 0 on the two sides x = 0 and y = 0. To make it

vanish also along the side x+y = 1 we now define an appropriate

correction term. Let Sp+ 2 denote the polynomial constructed in

Len~na 2.2 with boundary data n'WP+l(x,l-x), -s'WP+l(x,l-x) for the

tangential derivative and the normal derivative respectively (here

we use the fact that fJ QP(x,y)dx dy = 0). Then

uP+I(x'y) P+I(xY) sP+2' - sp+2_ _ -~- .
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satisfies the requirements i) and (ii), Bv inteqration it also

immediately follows that

ly=l-x , [0,1] CIO 0, T0

Combining this with the estimate (iii) of Lemma 2.2 one finds

(9) I(- Sp + 2 , - -- Sp + 2 )I < C(p+l) 4

ax 1,T0  0,T2 0
< C(p+) K 1QP|0 I

for any K > 7. The estimates (8) and (9) easily yield (iii).

0

The following lemma characterizes the range of the divergence

operator for the case of a single triangle and polynomial fields with

homogeneous boundary conditions. In addition it establishes a bound on

the norm of a maximal right-inverse for 7.. As will be clear

from the proof,the latter is the most difficult.

Lemma 2.4. Let T be a triangle the vertices of which have

coordinates (xiY.), 1 < i < 3. Let QP(x,v) be a polynomial in

x and y of degree < p such that QP(xiyi) = 0, 1 < i < 3, and

f OP(x,y)dx dy = 0.

There exists a field U
+ l = (U + I , U2  ) of polynomials

of degree < p+l,satisfying

i) U = 0 on DT

(ii) 7-Up + I = Op in T

(iii) 'u p+)K IQPII p T Pl ,T

with constants C and K that

are independent of p and QP.

jj~r - =IN"



11

Proof: The lemma is trivial for p < 1, so in the following we

shall always assume that p > 2. Let PP+1 denote the polynomials

in x and y of degree < p+l and let Pp+l denote pp+l 4 l(T). It

is easy to check that the divergence operator maps P+l-x P+l into

the subspace of PP characterized by QP(xiy i) = 0, 1 < i < 3, and

fiT QP(x,y)dx dy = 0. The dimension of 
- p+l is (p-l)p. The

null space of V- is for p > 4 given by

3
{(I Qp+2 _ Qp+2) Qp+ 2 (x,y) = I aix+v+c2 RP-4 p - 4 Pp - 4

i = l 1 1 R ( x yi )

where aix + biy + ci = 0, 1 < i < 3, are the

equations for the 3 sides of T For p = 2,3 the nullspace consists

of 0 only. Hence in general the null space has dimension (p-3) (p-2 )/2 .

By using the Grassmann dimension formula we now qet that the -range of

V. must have dimension (p-l)p - (p-3) (p-2 )/2 = (p+l) (p+2)/2 - 4.

Since the subspace of PP characterized by QP(xi,Yi) = 0, 1 < i < 3,

andJ QP(x,y)dx dy = 0 has dimension exactly (p+l) (p+2)/2 - 4, weJ J 7 
+ +

conclude that V. maps Pp4l x p onto this soace. In other words,

given OP E PP which satisfies QP(x.,y i) = 0, 1 < i < 3, and

JT QP(x,y)dx dy = 0 one can find UP +', a field of polvnomials of

degree < p4l, with the properties (i) and (ii).

The estimate (iii) does not follow from the previous argument.

The existence of a bounded maximal right-inverse for any fixed p is

guaranteed, what we do not know is how the norm depends on p.

In order to prove (iii) it is certainly sufficient to consider

p> 5. Let QP be a polynomial of degree< p which satisfies QP(xi,yi) = 0,

1 < i < 3, and HT OP(x,y)dx dy = 0. One can always find a polynomial

IT
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R5 of degree < 5 such that

(10) (.L)j (.L)k (QpR 5 )(xY) = 0

for 0 < j+k < 2, 1 < i < 3,

(11) iJ (Qp_.RS) (xy)dx dy = 0 and.

T

(12) IR5 10, T  < cIQPItT for any t > 3.

Due to (10) and (11), R (xi,yi) - 0, 1 <_ i < 3, and (xy)dx dy - 0.

T
The combinatorial argument at the beginning of this proof therefore

gives the existence of a field V6 with the properties

V6 =0 on T,

V-V6 = R5 in T and

(13) IV6 1 < CIR 5 I OT

Based on (12) and (13) we get

IV61 < cIQPI
-- 1,T -- tT

< C(p+1)2t IQPI0,T

for any t > 3.

Thus it suffices to prove the assertion (iii) for polynomials

QP that additionally vanish up to and including second derivatives at

the vertices of T. Such a QP may, accordinq to Lemma 2.1, be written as

i ..............
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QP(x,y) (alx+ bly+ c1 2) a2 2Y+ c 2  1

+ (a 2 x+ b 2 y+ c 2 ) 2 ( a 3 x  + 2 o2- 4 (x y)

+ (a 3 x+b 3 Y+ c3) 2 (alx+blY+ ) 2 p- 4 (x,y)

where the integral of each term over T vanishes, and the L2norm of

each term is bounded by

C(p+l)K IQPI0, T •

An application of Lemma 2.3 term by term now leads to the desired

result. 0

In order to extend the previous result from a single triangle

to the entire triangulation we shall need one more lemma. Let us

first introduce some notation. P] denotes the set of continuous

functions on Q, whose restriction to each triangle is given by a

polynomial of degree at most p. By an internal vertex of E we

understand a vertex which lies in Q (not on DQ) . pp,-i

denotes the set of functions, whose restriction to each triangle

is given by a polynomial of degree at most p (no inter-element

continuity requirements), with the additional property that:

R.l. "At any internal vertex (x0 ,Y0 ) of the trianqulation, where

four triangles come together as in Fig. 1

(i.e., the sides meeting at (x0 ,y0 ) fall on two straight lines

the corresponding values {QP(x 0 ,y)}= satisf

Qp(xo,yo) = Q(Xovo) =O'i 00
i even i odd



14

T4

Fig. I

Lemma 2.5. Let VP be an element of PIP]-l There exists

W p[31,0, p[3bo such that

Mi VP'-V-W3 = 0 at all vertices

of the triangulation E

(ii 1 3 1 P C(P+1)K 1P10, f

with constants C and K that are

independent of p, VP'

Proof: Let us consider two triangles placed adjacent to each other

2 11T3

Fig. 2
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We easily construct a field U3, given by third order poly-

nomials in each triangle, continuous in T 1 u T2' vanishing along

(T1 U T2) (the outer boundary) and such that each component has

derivative 0 in the direction n2 at the vertex 0' and a prescribed

derivative in the direction n2 at the vertex 0. If

[i a 1 1 l + a12 n2

[ _= a21 n, + a2 2 
n 2

then

(14) V.U3  a a 3
1 an 22 U+a 2 2

in T, at the vertex 0. Similarly if

01 = b1 1 n2 + b12 n3

I3 = b21 n2 
+ b 2 2 n3

then

(15) _.3=b a U

2 2

in T at the vertex 0.

It is easy to see that the vectors [ 12] and [1 1 are

linearly independent except in case [
211

= U3
n3 =-l Since we have the freedom to prescribe a U_ at the

vertex 0, (14) and (15) enable us to prescribe any pair of values
3for V.U (0), one value in T and another in T2 , provided nI and n3

are linearl.y independent. If n and n 3 are linearly dependent then

the formulas (14) and (15) prescribe the same value for V.U3 (0)

in T as well as T2.

b . ..
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Let us now apply this preliminary result to an internal

vertex 0 of Z.

r 3  T
3 1

T 0

Fig. 3

First suppose that there exists a pair of adjacent triangles such

that the combined angle is not (e.g. TN and T1 in Fig.3 ).

By the procedure just described, we may prescribe the same value

for the divergence at O in the two triangles T1 and T2. Now we

turn counterclockwise and do the same in T2 and T3. Continuing

that way until we reach the last triangle TN and performing a

summation, we obtain the following set of prescribed values:

T .aIT *a a

T2 a 1 + a2

T3 a2 + a3

TN-1 aN-2 + aN- 1

T a
N N-1

Since the al,...,aN 1 may be chosen arbitrarily, this

clearly gives the possibility of assigning any set of values in

the triangles T1 through TN_. By assumption TN and T1 do not

have a combined angle of w so we can also prescribe a value a N

in TN and 0 in T11 .This permits us to construct any set

of values for the divergence at 0 in the triangles T1 through TN.
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The only way there can be no two adjacent triangles with

combined angle $ i is if the vertex is the intersection of two straight

lines (Fig. 1). Taking two triangles at a time as before, we can now

prescribe

2 a1

T2  a1 + a2

T3  a2 + a3

T a3

i.e., exactly those sets of values that satisfy

7 value(Ti) f 7 value(Ti)

i even i odd

This is precisely the constraint imposed on P[P]'-1 at such vertices.

For any VP r p]'-' we are therefore able to find a field U
3

33
(continuous in Q) such that Vp - V.U3 . 0 at a particular internal

vertex and V.U = 0 at all other vertices. Our construction

has the property that

3 3

IU311,n :i C (p+ I)K IvPI0,

for any K > 2.

By a similar construction we can also obtain a U such thatVp " 3 3 tal te

-U = 0 at a particular vertex on a0 and VU 3 = 0 at all other

vertices. dding over all vertices of E we qet the desired field. 0

We are now finally in a position to prove the main result of

this section.

Theorem 2.1. Let VP denote the space V-(P[P+"}' 0 × p(P+l,0).

There exists a linear operator L from D P into PIP+l],0 xp[p+l1,0

such that
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M .(Lp Vp ) - VP V VP E P

(ii) ILp VPllf < C(p+l) K IvPI0, V VP E Dp

with constants C and K that

are independent of p, Vp.

Furthermore, there exists P0 such that

p = prp],-i

for any p > p0.

Proof: We begin by showing that given VP  P[ there exists

UP + I e p[p+1],0 x p(P+l1 0 such that

(16) IVp - V-uP+11on < c*(p+I) - t * IVPlon t* > 0.

It is sufficient to prove (16) for p > 9. Because of

Lemma 2.5 it obviously suffices to consider VP that satisfy

VP = 0 at all vertices of E and verify that

(17) 1Vp -V UP + 1 0 , 1_ C(p+I) -t IVPI 0 ,S

for some t > 2. Construct a piecewise ninth degree polynomial

9 that vanishes up to and including second derivatives on

all sides of E (and therefore at all vertices) with

II (VP_ 9 ) dx dy = 0

on every triangle T.This satisfies 6V913,, _ CIVPI10 ,.

Application of Lemma 2.4 separately to each trianqle

shows that we can find Wp  p+l 0 x Pip+l],O with

V..wp+l = Vp _ V9

I Wp+II < C(p+I) K IvPI

- ' S O',,D:,, .
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It is possible to determine 0 such that

AO - 9  in

a n d 1 1 5 , 0 < C 0 91 3 A

Hence there exist polynomials Op+2 of degree < p+2 with

op+2) -3 -9
I P C(P+l) IV t3,n•

'C (p+) -3 VPI0A

Therefore P+1 -Vo p + 2 satisfies

(19) I0 - V.Y,+Ilo,0 < C(p+) -3 IVPIo,0

Let 'Up* hc given by ULp +  wP+l+ _+Y , a combination of (18)

and t19) then yields (17) (with t = 3).

It is easily checked that the inclusion DP C pPJ,-1 holds.
-t

On the other hand let p0 be such that C* (p0+l) < I

(C*, t* are here the specific constants in (16)) it follows

then directly from (16) that the orthogonal complement of 9P

in PIP]'-I contains 0 only, i.e. VP = PIP] '-l,for p > p0.

We now go back to (18); instead of approximating
:[qo] ,-l

' q0 - max P0,9), we may at this point use

the fact that we can findz 0  :P 0 X P such that

V • -Zq 0+1 . 09

and and Iq0+111, < CIAgo,
1, f?~ 0,S1

<CIVPI n

Defining UP+  = WP+l+ zq 0 +l e P[p+11,0 x Ptp+lI,0 (p2q 0 ) we get

! -' ~ u--
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(20) V. U
p + 

=V
p

and

(21) _IuP+ < C(p+l) K IVPI

In the construction leading to (20) and (21) we assume that

VP EPIP)'-' satisfies VP = 0 at all vertices of E. Applying

Lemma 2.5 we obtain that (20) and (2i) may be satisfied for

any Vp  piP] ,-1 (p >q 0 ). Let LpVP denote the field in

pip+1],0 x Pip+l],0 with minimal Hl-norm for which (20) holds.

Then L is linear, (i) holds by definition and (ii) followsp

from (21). This establishes the existence of an apropriate

operator Lp provided p > q0 ,and that is obviously sufficient. 13

Remark 2.1. If the domain is simply connected then the divergence

operator acting on PIP+1 1 , 0 x pIp+l],0 has as its null space

{ Sp + 2  I sP+2), Sp + 2  C
ay - - is a C piecewise polynomial of degree

p+2}. From the formula for the dimension of the space of C1

piecewise polynomials of degree < q (q>5) that is given in [8]

one can compute the dimension of this null space in case p > 3

(the vertices that fall at the intersectionof two straight lines play

a special role in this formula). By the Grassmann dimension formula

one finds that VP = PIp],-I for any p > 3. This argument also

extends to cover polygonal domains n that are not simply

connected,still showing that VP =pip],- for any p > 3.

J..i
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Remark 2.2. Let n be an arbitrary bounded Lipschitz domain.

We now permit a triangulation of n to have triangles with

one curved side (in common with 3Q).

Assume that any of the triangles with one curved side can be

mapped affinely onto a Lipschitz domain of the form

{(x,y) I 0 < x < 1, 0 < y < g(x)}

where g is monotone and satisfies g(O) = 1, g(l) 0.

With this assumption one may easily check that Theorem 2.1

remains valid also for triangulations of nonpolygonal

domains n.

Remark 2.3. The proof of Theorem 2.1 immediately leads to

a similar theorem for fields that satisfy homogeneous Dirichlet

boundary conditions on a polygonal domain. The space

corresponding to p[p],-1 will now be defined through the

two additional requirements:

R.2. "At any vertex (x0,0 on 30 where k triangles,

I < k < 4, come together as in one of the cases

shown in Fig. 4 (i.e. the sides meeting at (x0 ,Y0 )

fall on two straight lines),

P P
oi(X = X Qi(x0,y0) ."i even i odd

i < k i < k

R.3. JQ(xy) dx dy 0
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3. Aolication to the p-version F.E.M.

In this section we study the behavior of the p-version of the

Finite Element Method for the case of a nearly incompressible

material. The continuous problem is that of plane strain linear

elasticity on a bounded,simply connected polygonal domain n.

We furthermore assume that all corners of SI have interior angles

< 2n. Formulated in terms of displacements u = (UV, u, 2 )

the continuous problem is

(2)1u - V(V-u V F in a,
(22) -Au - -v _

where F represents an external force (to be specific F is the

external force scaled by 2(l+v)/E). E > 0 denotes the Young modulus

and 0 < v < the Poisson ratio; the case that v is very close to h

corresponds to a nearly incompressible material. The boundary

conditions are

(23) U - 0 on P .

The analysis presented here could easily be extended to the case

that homogeneous Dirichlet data is given on part of the boundary

and natural (stress) boundary conditions on the rest.

Solving the boundary value problem (22) and (23) is equivalent to

minimizing the energy expression

II

I Z=-
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i i .- l 2 + _ v 2)2 + 1 +) v 2 + V - 2 .

(24) 5 1a-v 2+ +ax 2 - (V - dx dv

-- J
:i

in (I). (We minimally assume that FG H- (n), the dual of (Q)

For values of , very close to (22) and (23) may be viewed as

a penalized version of the Stokes problem

(25) AU + VP = F and

V.U = 0 in Q , with

U = 0 on •

(It is well known that (25) has a unique solution U e ;I(C),

p E L2 (0) / {constants} provided F C H-( M), cf. [10].)

We shall make use of the following simple estimate
1 1/21

(26) uv-_I ,S + _12V IT.(uv-U) Io,n 1C(1-2v)/2 IN

where I 0 ,a refers to the norm in the quotient space.

Let r ={T)% be a triangulation of 0 with the property that

no vertex of a triangle lies in the interior of a side of another.

;(p] ,0 denotes the set of continuous functions, whose restriction

to each ti-iangle is a polynomial of degree at most p and whose trace

on aO vanishes. The finite dimensional problems we consider

are those that arise when the energy expression (24) is minimized in

;(pJ.O 4i(pJ,0 p > 0. For values of v away from the finite

dimensional solutions are easily seen to be as good as the best Hl-

approximations to u V from within the spaces ;[p],0 x;[P],0
i-

-.o
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The aim of this section is to prove an optimal asymptotic error

estimate in terms of negative powers of p, which is valid in the limit as

v approaches h. First a simple approximation result.

Lemua 3.1. For any k >1 and any c > 0 there exists a constant

C k, such that

inf Iv-0P, < C (p+l)-k+l£IvI

-- l;f - k, - k,fl

for any p 2 0 and any y e kf I()2.

Proof: see (4]

Let u denote the element of [p], [p],0 that minimizes

(24), we shall now prove that u converges to u at the optimal

rate even in the limit as v approaches h. Unlike the result proven

in 11), for the case of a smooth boundary ap and natural boundary

conditions on all of a, the following theorem does not establish

uniformly valid optimal convergence rates. The weaker fcrmulatien

is due to the nonsmoothness of the boundary a . M-Pq for a tjxet!

load F the corner singularities and therefore the smoothness of the

solution u is likely to depend on v . This means that there are no

uniformly valid optimal rates, rather the optimal rates depend on V.

It is undoubtedly possible to establish error estimates that exhibit

these optimal rates (depending on v ) but with constants that

are independent of v .Technically however this introduces a lot of

difficulties that are irrelevant to the main scope of this section,

namely to understand exactly what makes the p-version superior for

nearly incompressible materials.

mull* .Ili



26

Theorem 3.1. Assume that s > 1 and V.E 10,1/2[. Let uv be

the solution to (22) and (23), and let U, P be the solution

to (25). For any p > 0, uv, p denotes the element in

[pJ,0 x A[p],0 that minimizes (24).

Given C > 0 there exists Cs, € (independent of v and p) such

that whenever U 6 Hs(M)

JU~v-Uv~pl, I + ( 1 )1/2 IV.(u -v,p) 10,

1W - v,p 1 ,g 1-2" -~V Vp 1 0f

Cs, i-sP~l) -s~l ul + C(I-2v)1/2 IN 0,n

(the constant C is independent of all parameters).

Proof: Let T (V) denote the projection of v onto (p]'0X* p ] 0

in the energy inner product associated with (24) .Then up = T VP(u

and therefore

l!uV-UVpll,O + [1 2v) 1V.(Uv- v,p0,O

< l'v-U2 ,n + (--)1I5V-(u - U)1 0

+ IU-T (U) I + (y) IV._Tvp(U). 0n

+ IT (U-U I + ( I_-) 1v(T (U-u)0,

The operators TV are uniformly bounded in the norms

I +l (-2v)* V.( , and by using the estimate (26)

we thus conclude

I

I , .... .. o. ...... .. . ... . .
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.v-u l 4- I.-+ 1 1/2 IV.(u-u)1

I- L'V'p 1'n -V-vpOVf

(27) < IU-TV,p(U)I 1 ,n + ( 1. '1 2 IV.(U -TVP(U))10,1

+ C(1-2v) 1 / 2 IPIOA.

Similar to Lemma 2.2 in [ii) (for which we did not use the smoothness

of the domain fl) we get for any v with V-v = 0 that

IV - Tv p(V)I , + (1 /2 17 - Tv'p(Y))IOfS

< D(C P) 2 inf IV- QPin)
-e POOo [P 0

where Cp denotes the L(L2,H1)-norm of any maximal right-inverse for

the divergence operator acting on P ]'0 x [P]'0 (here we

assume that p>3 so that I.c(p ] 0  [p],0) 0 ) Theorem 2.1

together with Remark 2. 3 shows that we can obtain Cp_ C(p+l)K,and

as a consequence of this and Lemma 3.1,

,nZ VIP .-_ Ul, + =) n .(v - T (vI ) MA,

(28)

iC (+)2Kk++c/2 *.Ik'- ~- _mf

k
provided V E H (02) A H1 (0) and V-v - 0

The operators TvIP are uniformly bounded, i.e.,

(29) EV-Tvp(Vll, + ( =. )h1V.(.V-TVp (.v))1 ,

< C IVI ,,

provided V-v = 0.
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Let Hr(n) denote the space Hr(n)n i1 (a)o {vlV'V = 0) , r > 1

Since n is simply connected Hr(O) may also be characterized as

-Wy I Hr(l) n 2 i.e., tr() is isomorphic to

Hr+l(11) n A2(g). Using the same ideas as in [21 (see also [12]) only

with the biharmonic operator instead of the Laplace operator one gets

the following result concerning complex interpolation and the spaces
Sr + j ( ) n,2(A) :

(Hr+lln) n k 2 (n) I H t+lln) nh2 ()) 6 Hr+l+( t-.r (n)n H2 1g

for any 1 < r < t and 0 < 8 < 1 (even though 0 is not smooth).

Due to this result and the aforementioned isomorphism we can now

interpolate between (28) and (29) to obtain

IV1 V, (_v- Tp(v))l

(30)

< Ck,,0(p+l)2+ c/2 iV l1+(k-l)e,

1+(k-1)0- 1I
for any 0 < 8 < l and any V eH M. Choose k> 4K-8-- + 1

8-1

and define 6 = • The estimate (30) with U, the solution to (25),

inserted for v then reads
a~u-,p(_)1,0 (1 ) IV.(U-Tp(_)) '~

I L-TV,(U) I +

(31)

o (p+1) - +  IUdsie e

C'ombining (27) and (31) we get the desired estimate. 0
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Remark 3.1. An alternate way to formulate the result of Theorem 3.1

is, in light of the estimate (26),
1 1/2

U_-RV'pil' n + (= ) iV.(U=uv'p)Ion

< C s,(p+l) l+  + C(l-2V) 1 / 2 IP0 1

V

By choosing the penalty parameter = sufficiently large and

minimizing (24) in I x [P],0 we thus obtain a solution u, p

that converges to U, the solution of the Stokes problem, at the rate

(p+l)- s+l (modulo an E) provided U E Fs (). This rate is optimal

for a general U E HS(n) ; if namely

lU-vj 11, 1 C(pj+l) - s + - 8

(pj] ,0 [pjO
for some 6 > 0 and some sequences vj E P x P ,

Pj+i/ p f A < -, pj -, then one could conclude (cf. (4]) that

u_ "s+t
U 6loc (Ti)

for any t < 6 and any triangle T. E. (U e Hs+t(Ti) means that

U E Hs't(K) on all compact subsets K of Ti.)

Remark 3.2. Whether one thinks of uV,p as an approximation to the

displacement for a nearly incompressible material or as an approxima-

tion to the solution of the Stokes problem, the behavior of the error

is remarkably different from that of more standard finite element

discretizations. If Zh denotes a triangulation of mesh size h and

one minimizes (24) in the set of continuous piecewise polynomials

of some fixed degree for decreasing values of h, then it is well

known that the convergence rates obtained this way are not optimal as

approaches , for piecewise linear functions there is no conver-

gence at all. We refer to the introduction of [11] for more details.

IlTF
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